论文标题

与应用相反的欧几里得和高斯等等不平等现象

Reverse Euclidean and Gaussian isoperimetric inequalities for parallel sets with applications

论文作者

Jog, Varun

论文摘要

$ r $ - 平行的可测量集合$ a \ subseteq \ mathbb r^d $的集合是所有点的集合,其距离$ a $的距离最多为$ r $。在本文中,我们表明,$ \ mathbb r^d $设置为$ r $ - 平行的表面积,最多$ v $由$ e^{θ(d)} v/r $上限,而其高斯表面积是$ \ max(e^> e^(e^θ(d)},e^},e^}(d)}(d)。我们还以$ r $ - 平行的集合得出了Brunn-Minkowski不等式的反向形式,作为高斯平滑的随机变量的反向熵功率不等式。我们将结果应用于理论机器学习中的两个问题:(1)在高斯分布下学习$ r $ - 平行集的计算复杂性; (2)界定估计稳健风险的样本复杂性,这是对抗性机器学习文献的风险概念,在假设检验中类似于贝叶斯风险。

The $r$-parallel set of a measurable set $A \subseteq \mathbb R^d$ is the set of all points whose distance from $A$ is at most $r$. In this paper, we show that the surface area of an $r$-parallel set in $\mathbb R^d$ with volume at most $V$ is upper-bounded by $e^{Θ(d)}V/r$, whereas its Gaussian surface area is upper-bounded by $\max(e^{Θ(d)}, e^{Θ(d)}/r)$. We also derive a reverse form of the Brunn-Minkowski inequality for $r$-parallel sets, and as an aside a reverse entropy power inequality for Gaussian-smoothed random variables. We apply our results to two problems in theoretical machine learning: (1) bounding the computational complexity of learning $r$-parallel sets under a Gaussian distribution; and (2) bounding the sample complexity of estimating robust risk, which is a notion of risk in the adversarial machine learning literature that is analogous to the Bayes risk in hypothesis testing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源