论文标题

与肾脏交换的异质偏好保持一致

Aligning with Heterogeneous Preferences for Kidney Exchange

论文作者

Freedman, Rachel

论文摘要

AI算法越来越多地做出影响整个人类群体的决定。由于人类倾向于拥有变化甚至相互矛盾的偏好,因此负责代表此类群体做出决策的AI算法遇到了偏好汇总的问题:将不一致的,有时甚至是矛盾的个体偏好组合为代表性的聚合。在本文中,我们在现实世界中的公共卫生环境中解决了这个问题:肾脏交换。将肾脏从活着的捐助者分配给需要肾脏交换匹配市场中需要移植的患者的算法应以与他们所服务的社区价值相符的方式优先考虑患者,但分配偏好却在各个个体之间差异很大。在本文中,我们提出,实施和评估一种基于这种异质道德偏好的患者优先级的方法。我们没有选择一组静态的患者权重,而是根据人类受试者对分配困境的反应而学到的分布,而不是偏好功能,然后从该分布中采样到在匹配过程中动态确定患者的体重。我们发现,这种方法可以提高采样偏好顺序中匹配的患者的平均等级,这表明对群体偏好的满意度更高。我们希望这项工作将为代表异质群体的未来自动化道德决策提供路线图。

AI algorithms increasingly make decisions that impact entire groups of humans. Since humans tend to hold varying and even conflicting preferences, AI algorithms responsible for making decisions on behalf of such groups encounter the problem of preference aggregation: combining inconsistent and sometimes contradictory individual preferences into a representative aggregate. In this paper, we address this problem in a real-world public health context: kidney exchange. The algorithms that allocate kidneys from living donors to patients needing transplants in kidney exchange matching markets should prioritize patients in a way that aligns with the values of the community they serve, but allocation preferences vary widely across individuals. In this paper, we propose, implement and evaluate a methodology for prioritizing patients based on such heterogeneous moral preferences. Instead of selecting a single static set of patient weights, we learn a distribution over preference functions based on human subject responses to allocation dilemmas, then sample from this distribution to dynamically determine patient weights during matching. We find that this methodology increases the average rank of matched patients in the sampled preference ordering, indicating better satisfaction of group preferences. We hope that this work will suggest a roadmap for future automated moral decision making on behalf of heterogeneous groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源