论文标题

与不匹配的自我兴奋过程的拟合优点测试

Goodness-of-Fit Test for Mismatched Self-Exciting Processes

论文作者

Wei, Song, Zhu, Shixiang, Zhang, Minghe, Xie, Yao

论文摘要

最近,在开发自我激发点过程的生成模型方面进行了许多研究,部分原因是它们对现实世界应用的广泛适用性。但是,由于通常未知,因此我们很少能量化生成模型捕获性质或地面真相的能力。挑战通常在于一个事实,即生成模型通常最多可提供与地面真相的良好近似值(例如,通过神经网络的丰富代表性),但不能准确地是基地真相。因此,我们不能使用经典的合适性(GOF)测试框架来评估其性能。在本文中,我们通过与准最大可能估计量(QMLE)的经典统计理论建立新问题来为自我激发过程的生成模型开发GOF测试。我们为GOF测试提供了非参数自分类统计量:广义分数(GS)统计,并在建立GS统计量的渐近分布时明确捕获模型错误指定。数值模拟和真实数据实验验证了我们的理论,并证明了提出的GS测试的良好性能。

Recently there have been many research efforts in developing generative models for self-exciting point processes, partly due to their broad applicability for real-world applications. However, rarely can we quantify how well the generative model captures the nature or ground-truth since it is usually unknown. The challenge typically lies in the fact that the generative models typically provide, at most, good approximations to the ground-truth (e.g., through the rich representative power of neural networks), but they cannot be precisely the ground-truth. We thus cannot use the classic goodness-of-fit (GOF) test framework to evaluate their performance. In this paper, we develop a GOF test for generative models of self-exciting processes by making a new connection to this problem with the classical statistical theory of Quasi-maximum-likelihood estimator (QMLE). We present a non-parametric self-normalizing statistic for the GOF test: the Generalized Score (GS) statistics, and explicitly capture the model misspecification when establishing the asymptotic distribution of the GS statistic. Numerical simulation and real-data experiments validate our theory and demonstrate the proposed GS test's good performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源