论文标题

puiseux monoids的原子化和分解

Atomicity and Factorization of Puiseux Monoids

论文作者

Gotti, Marly

论文摘要

PUISEUX MONOID是一个合理数字的非负锥的添加剂亚monoid。尽管puiseux单素是无扭转的秩一个单肌,但它们的原子结构富含且高度复杂。因此,它们是在交换代数和分解理论中构建关键示例的重要对象。 1974年,安妮·格兰斯(Anne Grams)使用puiseux monoid来构建一个不满足ACCP的原子领域的第一个例子,这表明科恩的猜想是每个原子域都满足了ACCP。即使最近,吉姆·科肯德尔(Jim Coykendall)和菲利克斯·戈蒂(Felix Gotti)也使用puiseux monoids来构建第一个原子代数(在田地上)的原子型单体,这些原子不是原子,回答了1980年代罗伯特·吉尔默(Robert Gilmer)在1980年代提出的问题。 该论文的重点是对PUISEUX MONOID的原子结构和分解理论的研究。在这里,我们建立了各种足够的条件,使puiseux monoid成为原子(或满足ACCP)。我们对两个最重要的原子特性进行了相同的操作:有限的属性特性和有界的属性特性。然后,我们比较了Puiseux单体的这四个原子特性。这导致我们构建和研究具有不同原子结构的几类PUISEUX MONOID。我们的调查提供了足够的证据,可以相信Puiseux类单体是最简单的类,具有足够的复杂性,可以找到几乎满足所有基本原子行为的单体。

A Puiseux monoid is an additive submonoid of the nonnegative cone of rational numbers. Although Puiseux monoids are torsion-free rank-one monoids, their atomic structure is rich and highly complex. For this reason, they have been important objects to construct crucial examples in commutative algebra and factorization theory. In 1974 Anne Grams used a Puiseux monoid to construct the first example of an atomic domain not satisfying the ACCP, disproving Cohn's conjecture that every atomic domain satisfies the ACCP. Even recently, Jim Coykendall and Felix Gotti have used Puiseux monoids to construct the first atomic monoids with monoid algebras (over a field) that are not atomic, answering a question posed by Robert Gilmer back in the 1980s. This dissertation is focused on the investigation of the atomic structure and factorization theory of Puiseux monoids. Here we established various sufficient conditions for a Puiseux monoid to be atomic (or satisfy the ACCP). We do the same for two of the most important atomic properties: the finite-factorization property and the bounded-factorization property. Then we compare these four atomic properties in the context of Puiseux monoids. This leads us to construct and study several classes of Puiseux monoids with distinct atomic structure. Our investigation provides sufficient evidence to believe that the class of Puiseux monoids is the simplest class with enough complexity to find monoids satisfying almost every fundamental atomic behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源