论文标题
基于改良的渐进式对冲
Stochastic Unit Commitment in Electricity-Gas Coupled Integrated Energy Systems based on Modified Progressive Hedging
论文作者
论文摘要
越来越多的天然气单元数量显着增强了电力和气体网络之间的耦合。传统上,气体流程方程中的非线性和非凸性,以及可再生诱导的随机性,导致了一个计算昂贵的模型,用于电力耦合的集成能量系统(IES)中的单位承诺。为了加快随机日期的调度,我们应用和修改了渐进式套期保值(pH),这是一种可以同时计算的启发式方法,可以平行计算,以产生与场景无关的单位承诺。通过应用终止和枚举技术,修改后的pH算法节省了相当大的计算时间,尤其是当所有发电机的单位生产价格相似,而IES的规模很大时。此外,适应的二阶锥体松弛(SOCR)用于应对非凸气流方程。对IEEE 24总线系统/比利时20节点气体系统和IEEE 118-BUS系统/比利时20节点气体系统进行案例研究。使用pH值时的计算效率是商业软件的188倍,甚至超过了弯曲器的分解。同时,在这两个IES系统中,pH算法和基准之间的差距均小于0.01%,这证明在此随机UC问题中,pH产生的溶液达到了可接受的最优性。
The increasing number of gas-fired units has significantly intensified the coupling between power and gas networks. Traditionally, the nonlinearity and nonconvexity in gas flow equations, together with renewable-induced stochasticity, result in a computationally expensive model for unit commitment in electricity-gas coupled integrated energy systems (IES). To accelerate stochastic day-ahead scheduling, we applied and modified Progressive Hedging (PH), a heuristic approach that can be computed in parallel to yield scenario-independent unit commitment. By applying a termination and enumeration technique, the modified PH algorithm saves considerable computational time, especially when the unit production prices are similar for all generators, and when the scale of IES is large. Moreover, an adapted second-order cone relaxation (SOCR) is utilized to tackle the nonconvex gas flow equation. Case studies are performed on the IEEE 24-bus system/Belgium 20-node gas system and the IEEE 118-bus system/Belgium 20-node gas system. The computational efficiency when employing PH is 188 times that of commercial software, even outperforming Benders Decomposition. Meanwhile, the gap between the PH algorithm and the benchmark is less than 0.01% in both IES systems, which proves that the solution produced by PH reaches acceptable optimality in this stochastic UC problem.