论文标题

数据同化授权的神经网络参数化,用于地球物理流中的亚网格过程

Data assimilation empowered neural network parameterizations for subgrid processes in geophysical flows

论文作者

Pawar, Suraj, San, Omer

论文摘要

在过去的几年中,使用机器学习方法来表示地球物理流中的亚网格量表过程有所扩大,目的是提高预测能力并加速对这些流量的数值模拟。尽管在不同类型的流动方面取得了成功,但数据驱动的闭合模型的在线部署可能会导致不稳定性和偏见在建模亚网格量表过程的整体效果时,这又导致预测不准确。为了解决这个问题,我们利用数据同化技术来纠正基于物理的模型,并与神经网络一起作为多尺度系统中未解决的流动动力学的替代物。特别是,我们使用一组神经网络体系结构来学习解决的流量变量与未解决的流动动力学的参数化之间的相关性,并制定一种数据同化方法,以在其在线部署过程中纠正混合模型。我们在多尺度Lorenz 96系统的一组应用中说明了我们的框架,该系统的参数化模型是完全已知的,并且二维Kraichnan湍流系统为未分辨量表的参数化模型尚不清楚。因此,我们的分析包括一个预测的动态核心,该核心由(i)用于亚网格量表过程的数据驱动闭合模型,(ii)用于预测误差校正的数据同化方法,以及(iii)数据驱动的闭合和数据同化程序。与仅使用神经网络参数化的未来预测相比,我们对基础混沌动力学的长期预测与我们的框架相比,我们显示出显着改善。

In the past couple of years, there is a proliferation in the use of machine learning approaches to represent subgrid scale processes in geophysical flows with an aim to improve the forecasting capability and to accelerate numerical simulations of these flows. Despite its success for different types of flow, the online deployment of a data-driven closure model can cause instabilities and biases in modeling the overall effect of subgrid scale processes, which in turn leads to inaccurate prediction. To tackle this issue, we exploit the data assimilation technique to correct the physics-based model coupled with the neural network as a surrogate for unresolved flow dynamics in multiscale systems. In particular, we use a set of neural network architectures to learn the correlation between resolved flow variables and the parameterizations of unresolved flow dynamics and formulate a data assimilation approach to correct the hybrid model during their online deployment. We illustrate our framework in a set of applications of the multiscale Lorenz 96 system for which the parameterization model for unresolved scales is exactly known, and the two-dimensional Kraichnan turbulence system for which the parameterization model for unresolved scales is not known a priori. Our analysis, therefore, comprises a predictive dynamical core empowered by (i) a data-driven closure model for subgrid scale processes, (ii) a data assimilation approach for forecast error correction, and (iii) both data-driven closure and data assimilation procedures. We show significant improvement in the long-term prediction of the underlying chaotic dynamics with our framework compared to using only neural network parameterizations for future prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源