论文标题
自主感知的自治领域不匹配估计
Self-Supervised Domain Mismatch Estimation for Autonomous Perception
论文作者
论文摘要
自主驾驶需要自我意识对其感知功能。从技术上讲,这可以由观察者实现,该观察者监视了各种感知模块的性能指标。在这项工作中,我们示例地选择了要监控的语义细分,并提出了一个自动编码器,以与要监控的语义分段相同的培训数据进行了自我监督的方式训练。在线推理期间,自动编码器的图像重建性能(PSNR)已经显示出良好的预测能力W.R.T.语义分割性能,我们提出了一个新颖的域不匹配度量DM,作为地球推动者在训练(源)数据(源)数据(源)数据(源)数据(源)数据(目标)数据上的在线获得的PSNR分布之间的距离。我们能够通过实验证明DM度量与其功能范围内的语义分割具有很强的等级顺序相关性。我们还提出了DM指标的训练域依赖性阈值,以定义此功能范围。
Autonomous driving requires self awareness of its perception functions. Technically spoken, this can be realized by observers, which monitor the performance indicators of various perception modules. In this work we choose, exemplarily, a semantic segmentation to be monitored, and propose an autoencoder, trained in a self-supervised fashion on the very same training data as the semantic segmentation to be monitored. While the autoencoder's image reconstruction performance (PSNR) during online inference shows already a good predictive power w.r.t. semantic segmentation performance, we propose a novel domain mismatch metric DM as the earth mover's distance between a pre-stored PSNR distribution on training (source) data, and an online-acquired PSNR distribution on any inference (target) data. We are able to show by experiments that the DM metric has a strong rank order correlation with the semantic segmentation within its functional scope. We also propose a training domain-dependent threshold for the DM metric to define this functional scope.