论文标题

关于分离群的可分离性有限条件

On separability finiteness conditions in semigroups

论文作者

Miller, Craig, O'Reilly, Gerard, Quick, Martyn, Ruskuc, Nik

论文摘要

以剩余的有限性为起点,我们考虑了三种相关的有限属性:弱的子群的可分离性,强大的子群的可分离性和完全的可分离性。我们研究了这些属性中的每一个是否均由Schützenberger组遗传。本文的主要结果指出,对于有限生成的交换性半群$ s $,这三个可分离性条件重合,相当于每一个$ \ nathcal {h} $ - $ s $ of $ s $都是有限的。我们还提供了示例,以表明这些特性通常在交换性半群和有限生成的半群中不同。对于有限许多$ \ Mathcal {H} $ - 类的半群,我们调查它是否具有这些属性之一,并且仅当其所有Schützenberger组都具有该属性时。

Taking residual finiteness as a starting point, we consider three related finiteness properties: weak subsemigroup separability, strong subsemigroup separability and complete separability. We investigate whether each of these properties is inherited by Schützenberger groups. The main result of this paper states that for a finitely generated commutative semigroup $S$, these three separability conditions coincide and are equivalent to every $\mathcal{H}$-class of $S$ being finite. We also provide examples to show that these properties in general differ for commutative semigroups and finitely generated semigroups. For a semigroup with finitely many $\mathcal{H}$-classes, we investigate whether it has one of these properties if and only if all its Schützenberger groups have the property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源