论文标题
重新审视施温格 - 克尔迪什形式主义的最小长度
Revisiting the minimum length in the Schwinger-Keldysh formalism
论文作者
论文摘要
通过计算Schwinger-Keldysh形式上适当距离的预期值来研究量子重力的最小长度。对于扰动理论中所有阶的任意重力理论,没有发现最小的几何长度。使用非扰动技术,我们还表明,一般相对论的共形扇形和更高衍生的重力都不具有最小长度。另一方面,当人们认为弹出幅度时,最小长度尺度似乎总是存在,从中可以从中提取散射过程的能量尺度。
The existence of a minimum length in quantum gravity is investigated by computing the in-in expectation value of the proper distance in the Schwinger-Keldysh formalism. No minimum geometrical length is found for arbitrary gravitational theories to all orders in perturbation theory. Using non-perturbative techniques, we also show that neither the conformal sector of general relativity nor higher-derivative gravity features a minimum length. A minimum length scale, on the other hand, seems to always be present when one considers in-out amplitudes, from which one could extract the energy scale of scattering processes.