论文标题
量子增强的干涉测量法
Quantum-enhanced interferometry with large heralded photon-number states
论文作者
论文摘要
量子现象(例如纠缠等)可以改善对测量探针灵敏度的基本限制。在光学干涉指标中,与相同能量的经典探针相比,由$ n $纠缠光子组成的探针可提供相位灵敏度的$ \ sqrt {n} $增强。在这里,我们采用高增益参数下转换源和光子数分辨率检测器来对高达$ n = 8 $的示意量子探测器进行干涉测量法(即测量高达16片光量同时发生)。我们的探针是通过将预示的光子数状态注射到干涉仪中而产生的,并且在原则上即使在存在明显的光学损失的情况下,也提供了量子增强的相位灵敏度。我们的工作铺平了使用大型纠缠光子状态的量子增强干涉法的道路。
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of $N$ entangled photons provides up to a $\sqrt{N}$ enhancement in phase sensitivity compared to a classical probe of the same energy. Here, we employ high-gain parametric down-conversion sources and photon-number-resolving detectors to perform interferometry with heralded quantum probes of sizes up to $N=8$ (i.e. measuring up to 16-photon coincidences). Our probes are created by injecting heralded photon-number states into an interferometer, and in principle provide quantum-enhanced phase sensitivity even in the presence of significant optical loss. Our work paves the way towards quantum-enhanced interferometry using large entangled photonic states.