论文标题
理解神经回路的pspace坚持不懈
The PSPACE-hardness of understanding neural circuits
论文作者
论文摘要
在神经科学中,理解神经回路功能的一个重要方面是确定回路中的神经元的哪些(如果有)对于由神经回路控制的生物学行为至关重要。一个类似的问题是,即使电路中的所有其他神经元都被停用,也可以确定给定的一小群神经元是否足以显示行为。这样的神经元的子集形成了所研究行为所谓的退化电路。 实验技术的最新进展为研究人员提供了激活和停用具有很高分辨率的神经元子集的工具,即使在活动物中也是如此。从此类实验中收集的数据可能是以下形式:当给定的神经元的子集停用时,是否观察到了研究的行为?这种设置导致算法问题,即当给出一个神经回路的描述时,确定神经元的最小或堕落的神经元集。算法问题既需要弄清楚应该扰动哪些神经元子集(激活/停用),然后使用来自这些扰动的数据来确定最小的生命或退化集。考虑到大量可能的扰动以及神经回路的复发性,在这种方法中,在这种方法中爆炸的可能性已在生物学和神经科学文献中得到认可。 在本文中,我们证明,发现最小或最小尺寸的退化集的问题,以及找到作为输入的神经回路的一组重要神经元的问题,实际上是pspace-hard。更重要的是,我们证明了一个更简单的问题,即模拟此类神经回路本身就是pspace-hard,证明了我们的硬度结果。
In neuroscience, an important aspect of understanding the function of a neural circuit is to determine which, if any, of the neurons in the circuit are vital for the biological behavior governed by the neural circuit. A similar problem is to determine whether a given small set of neurons may be enough for the behavior to be displayed, even if all other neurons in the circuit are deactivated. Such a subset of neurons forms what is called a degenerate circuit for the behavior being studied. Recent advances in experimental techniques have provided researchers with tools to activate and deactivate subsets of neurons with a very high resolution, even in living animals. The data collected from such experiments may be of the following form: when a given subset of neurons is deactivated, is the behavior under study observed? This setting leads to the algorithmic question of determining the minimal vital or degenerate sets of neurons when one is given as input a description of the neural circuit. The algorithmic problem entails both figuring out which subsets of neurons should be perturbed (activated/deactivated), and then using the data from those perturbations to determine the minimal vital or degenerate sets. Given the large number of possible perturbations, and the recurrent nature of neural circuits, the possibility of a combinatorial explosion in such an approach has been recognized in the biology and the neuroscience literature. In this paper, we prove that the problems of finding minimal or minimum-size degenerate sets, and of finding the set of vital neurons, of a neural circuit given as input, are in fact PSPACE-hard. More importantly, we prove our hardness results by showing that a simpler problem, that of simulating such neural circuits, is itself PSPACE-hard.