论文标题
保守的蒙德从第一原则
Conservative MOND from first principles
论文作者
论文摘要
反对米尔格罗姆(Milgrom)的蒙德(Mond)的主要论点是,它没有理论上的支持,即使在尝试提供它方面已经花费了大量努力。反对这一批评,蒙德无可辩驳地享有不断扩大的成功组合,因此几乎可以肯定地利用了基本的东西。但是什么? 在大约同一时期,蒙德一直是一个争议的话题,巴里沙夫,西洛斯·拉比尼和其他人在早期就声称,在早期的争议中,至少在中等规模上,宇宙中的材料以准式 - 法式$ d \ d \ 2美元的方式分布。有一个链接:如果认真对待中等尺度上的准法性$ d \ 2 $宇宙的想法,那么有一个相关的特征质量表面密度,$σ_f$说,并且相关的特征加速度$ a_f =4πg\4πg\,σ_f$。 MOND的全部成功取决于关键加速度量表的想法,即$ A_0 $。使关联$ a_0 \ sim a_f $,然后将Mond临界加速度边界作为特征性质量质量表面密度边界的标记,将“星系”与以$σ_F$为特征的环境区分开来,这是一个显而易见的步骤。这为从第一原则中综合保守的蒙德提供了途径。 当应用于SPARC样品时,保守的MOND的径向加速关系(RAR)是统一线。没有质量差异。
The primary argument levelled against Milgrom's MOND is that it has no theoretical support, even though considerable effort has been expended in attempting to provide it. Against that criticism, MOND irrefutably enjoys an expanding portfolio of success and so is almost certainly tapping into something fundamental. But what? Over roughly the same period that MOND has been a topic of controversy, Baryshev, Sylos Labini and others have been claiming, with equal controversy in earlier years, that, on medium scales at least, material in the universe is distributed in a quasi-fractal $D\approx 2$ fashion. There is a link: if the idea of a quasi-fractal $D\approx 2$ universe on medium scales is taken seriously, then there is an associated characteristic mass surface density, $Σ_F$ say, and an associated characteristic acceleration scale $a_F = 4πG \,Σ_F$. The whole success of MOND is predicated upon the idea of a critical acceleration scale, $a_0$. It is an obvious step to make the association $a_0 \sim a_F$ and then to consider the MOND critical acceleration boundary simply as a marker for a characteristic mass surface density boundary separating 'galaxy' from an environment characterized by $Σ_F$. This provides a route to the synthesis of conservative MOND from first principles. The radial acceleration relation (RAR) for conservative MOND when applied to the SPARC sample is the unity line. There is no mass discrepancy.