论文标题
在二次差异的墙壁交叉公式上
On the wall-crossing formula for quadratic differentials
论文作者
论文摘要
我们证明了Kontsevich-Soibelman墙壁交叉公式的一个分析版本,描述了随着差异的变化,二次差异跳跃的有限长度轨迹数量如何。我们表征了使用Fock-Goncharov坐标出现在该壁划入公式中的代数圆环的某些异态自动形态。作为应用程序,我们计算出在Schrödinger方程的确切WKB分析中出现的Voros符号的Stokes自动形态。
We prove an analytic version of the Kontsevich-Soibelman wall-crossing formula describing how the number of finite-length trajectories of a quadratic differential jumps as the differential is varied. We characterize certain birational automorphisms of an algebraic torus appearing in this wall-crossing formula using Fock-Goncharov coordinates. As an application, we compute the Stokes automorphisms for the Voros symbols appearing in the exact WKB analysis of Schrödinger's equation.