论文标题

零件依赖性标签噪声:针对实例依赖性标签噪声

Part-dependent Label Noise: Towards Instance-dependent Label Noise

论文作者

Xia, Xiaobo, Liu, Tongliang, Han, Bo, Wang, Nannan, Gong, Mingming, Liu, Haifeng, Niu, Gang, Tao, Dacheng, Sugiyama, Masashi

论文摘要

使用\ textIt {Instance依赖性}标签噪声的学习是具有挑战性的,因为很难对这种现实世界的噪声进行建模。请注意,心理和生理证据表明,我们人类通过将它们分解为一部分来感知实例。因此,注释者更有可能根据各个部分而不是整个实例来注释实例,在这种情况下,从零件到类的错误映射可能会导致依赖实例的标签噪声。在本文中,我们通过这种人类认知的动机,通过利用\ textit {零件依赖性}标签噪声来近似实例依赖性标签噪声。具体而言,由于可以通过零件组合来大致重建实例,因此我们通过实例依赖实例的\ textit {transition矩阵}来近似实例,以通过对实例部分的过渡矩阵的组合进行实例。可以通过利用锚点(即几乎肯定属于特定类别的数据点)来学习零件的过渡矩阵。对合成和现实世界数据集的经验评估表明,我们的方法优于从实例依赖性标签噪声中学习的最新方法。

Learning with the \textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise. Note that there are psychological and physiological evidences showing that we humans perceive instances by decomposing them into parts. Annotators are therefore more likely to annotate instances based on the parts rather than the whole instances, where a wrong mapping from parts to classes may cause the instance-dependent label noise. Motivated by this human cognition, in this paper, we approximate the instance-dependent label noise by exploiting \textit{part-dependent} label noise. Specifically, since instances can be approximately reconstructed by a combination of parts, we approximate the instance-dependent \textit{transition matrix} for an instance by a combination of the transition matrices for the parts of the instance. The transition matrices for parts can be learned by exploiting anchor points (i.e., data points that belong to a specific class almost surely). Empirical evaluations on synthetic and real-world datasets demonstrate our method is superior to the state-of-the-art approaches for learning from the instance-dependent label noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源