论文标题

交替的convlstm:与替代状态更新的学习力传播

Alternating ConvLSTM: Learning Force Propagation with Alternate State Updates

论文作者

Deng, Congyue, Mu, Tai-Jiang, Hu, Shi-Min

论文摘要

当传统的数值方法达到其限制时,数据驱动的仿真是计算物理学的重要逐步。在过去的几年中,基于学习的模拟器已被广泛研究。但是,大多数以前的作品将仿真视为一种一般的时空预测问题,并且在设计其神经网络架构时几乎没有物理指导。在本文中,我们介绍了交替的卷积长短期记忆(ALT-CONVLSTM),该记忆(ALT-CONVLSTM)模拟具有近均匀材料特性的可变形物体中的力传播机制。具体来说,我们提出了一个积累状态,并让网络交替更新其单元格状态和累积状态。我们演示了这种新颖的方案如何模仿数值PDE求解器的前向Euler方法中一阶项和二阶项的替代更新。从中受益,我们的网络仅需要少数参数,与模拟粒子的数量无关,并且还保留了ConvlSTM中的基本特征,因此自然适用于具有空间输入和输出的顺序数据。我们在用数千个颗粒和一致的身体姿势变化的人类软组织模拟上验证我们的alt-convlstm。实验结果表明,Alt-Convlstm有效地对材料动力学特征进行建模,并且仅具有单个状态更新,胜过vanilla convlstm。

Data-driven simulation is an important step-forward in computational physics when traditional numerical methods meet their limits. Learning-based simulators have been widely studied in past years; however, most previous works view simulation as a general spatial-temporal prediction problem and take little physical guidance in designing their neural network architectures. In this paper, we introduce the alternating convolutional Long Short-Term Memory (Alt-ConvLSTM) that models the force propagation mechanisms in a deformable object with near-uniform material properties. Specifically, we propose an accumulation state, and let the network update its cell state and the accumulation state alternately. We demonstrate how this novel scheme imitates the alternate updates of the first and second-order terms in the forward Euler method of numerical PDE solvers. Benefiting from this, our network only requires a small number of parameters, independent of the number of the simulated particles, and also retains the essential features in ConvLSTM, making it naturally applicable to sequential data with spatial inputs and outputs. We validate our Alt-ConvLSTM on human soft tissue simulation with thousands of particles and consistent body pose changes. Experimental results show that Alt-ConvLSTM efficiently models the material kinetic features and greatly outperforms vanilla ConvLSTM with only the single state update.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源