论文标题

历史流量数据重新构成应用小波变换

Historical traffic flow data reconstrucion applying Wavelet Transform

论文作者

Ribeiro, E. R., Cunha, A. L.

论文摘要

尽管基本参数(流量流,密度和速度)对于描述交通行为的重要性很重要,但仍存在一些困难来获取和存储此信息。此外,鉴于研究类型或项目的分析分析间隔可能从不到一小时到每年不等。为了在数据库结构中创建替代方案,本文旨在提出一种使用小波变换从汇总数据中重构分解历史数据的方法。从提出的方法中,可以在较长间隔的数据中以短间隔重建数据,因为它们具有相同的行为,例如来自同一高速公路或相似高速公路的数据。因此,通过分解数据,通过离散小波变换(DWT)生成细节系数。汇总数据通过近似系数重建。建立这些系数后,应用逆小波变换(IWT)。结果表明,重建的0.960的原始数据之间存在平均相关性; 0.974;最初在10、20、40和80分钟间隔间隔汇总的数据0.968和0.960。结果还表明绝对平均误差为7.13%。 8.74%;最初在10、20、40和80分钟中汇总的数据的9.83%和11.23%。换句话说,结果表明,重组的数据与原始信号的平均绝对误差的相关性很高,而平均绝对误差的百分比较低。总之,从汇总数据和小波变换中的数据重建具有良好的相关性和较低的平均绝对错误率,可与交通估计研究相当(Castro-Neto等,2009; Coric等人,Coric等人2012; Lam等,Lam等,2006; Lim,2001)。

Despite the importance of fundamental parameters (traffic flow, density and speed) to describe the traffic behavior, there still are some difficulties in order to obtain and store this information. Furthermore, given the type of study or the project the resolution analysis interval can vary from less than one hour to annual. To create alternatives in database structures,this article aims to present a method to reconstruct disaggregated historical data from aggregated data using Wavelet Transform. From the proposed method, it is possible to reconstruct data in short intervals from data with longer intervals,since they have the same behavior, for example, data from the same or similar highway. For such, a Detail coefficient is generated through the Discrete Wavelet Transform (DWT) with the disaggregated data. The aggregated data was reconstructed through an Approximation coefficient. After establishing these coefficients, the Inverse Wavelet Transform (IWT) is applied. The results indicated an average correlation between the reconstructed the original data of 0.960; 0.974; 0.968 and 0.960 for data initially aggregated at 10, 20, 40 and 80 minutes interval, respectively. The results also indicated an absolute mean error of 7.13%; 8.74%; 9.83% and 11.23% for data initially aggregated in 10, 20, 40 and 80 minutes, respectively. In other words, results suggest that the reconstituted data have a high correlation and a low percentage of mean absolute error with the original signal. In conclusion, the reconstruction of data from aggregated data and Wavelet Transform presents a good correlation and low average absolute error rate, comparable to traffic estimation studies (CASTRO-NETO et al., 2009; CORIC et al. 2012, LAM et al., 2006; LIM, 2001).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源