论文标题

自我监督发现解剖形状地标

Self-Supervised Discovery of Anatomical Shape Landmarks

论文作者

Bhalodia, Riddhish, Kavan, Ladislav, Whitaker, Ross

论文摘要

在广泛的医学和生物学应用中,统计形状分析是一种非常有用的工具。但是,它通常依赖于产生相对少数功能的能力,这些功能可以捕获人群中的相关变异性。获得此类解剖特征的最新方法依赖于广泛的预处理或分割和/或重要的调整和后处理。这些缺点限制了形状统计的广泛使用。我们建议有效的形状表示应提供足够的信息来对齐/注册图像。使用此假设,我们提出了一种自我监督的神经网络方法,用于自动定位和检测可用于后续分析的图像中的地标。该网络发现与解剖形状特征相对应的地标,这些特征在特定类别的转换类别的背景下促进了良好的图像注册。此外,我们还为提出的网络提出了一个正规化,该网络允许这些发现的地标的均匀分布。在本文中,我们提出了一个完整的框架,该框架仅采用一组输入图像并产生可立即用于统计形状分析的地标。我们在幻影数据集以及2D和3D图像上评估了性能。

Statistical shape analysis is a very useful tool in a wide range of medical and biological applications. However, it typically relies on the ability to produce a relatively small number of features that can capture the relevant variability in a population. State-of-the-art methods for obtaining such anatomical features rely on either extensive preprocessing or segmentation and/or significant tuning and post-processing. These shortcomings limit the widespread use of shape statistics. We propose that effective shape representations should provide sufficient information to align/register images. Using this assumption we propose a self-supervised, neural network approach for automatically positioning and detecting landmarks in images that can be used for subsequent analysis. The network discovers the landmarks corresponding to anatomical shape features that promote good image registration in the context of a particular class of transformations. In addition, we also propose a regularization for the proposed network which allows for a uniform distribution of these discovered landmarks. In this paper, we present a complete framework, which only takes a set of input images and produces landmarks that are immediately usable for statistical shape analysis. We evaluate the performance on a phantom dataset as well as 2D and 3D images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源