论文标题

旋转汉密尔顿参数的数据驱动确定及其不确定性:曲折链链的情况

Data-driven determination of the spin Hamiltonian parameters and their uncertainties: The case of the zigzag-chain compound KCu$_4$P$_3$O$_{12}$

论文作者

Tamura, Ryo, Hukushima, Koji, Matsuo, Akira, Kindo, Koichi, Hase, Masashi

论文摘要

我们提出了一种数据驱动的技术,以估计来自多个物理量的旋转哈密顿量,包括不确定性。使用我们的技术,从实验观察到的磁敏感性和磁化曲线确定,在高磁场下具有各种温度,确定了KCU $ _4 $ p $ _3 $ _3 $ o $ o $ o $ o $ o $ o $ o _ {12} $的有效模型的有效模型。一个有效的模型,它是锯齿形链上的量子Heisenberg模型,其八个旋转具有$ j_1 = -8.54 \ pm 0.51 \ {\ rm mev} $,$ j_2 = -2.67 \ pm 1.13 \ pm 1.13 \ pm 1.13 \ {\ rm Mev} $,$ j_3 = -3.90 $ 0.15 = -3.90 \ pm \ c. $ j_4 = 6.24 \ pm 0.95 \ {\ rm mev} $,很好地描述了这些测得的结果。这些不确定性通过噪声估计成功确定。还讨论了估计的磁相互作用或物理量之间的关系。获得的有效模型可用于预测难以估量的特性,例如自旋隙,基态旋转构型,磁性热和磁熵。

We propose a data-driven technique to estimate the spin Hamiltonian, including uncertainty, from multiple physical quantities. Using our technique, an effective model of KCu$_4$P$_3$O$_{12}$ is determined from the experimentally observed magnetic susceptibility and magnetization curves with various temperatures under high magnetic fields. An effective model, which is the quantum Heisenberg model on a zigzag chain with eight spins having $J_1= -8.54 \pm 0.51 \{\rm meV}$, $J_2 = -2.67 \pm 1.13 \{\rm meV}$, $J_3 = -3.90 \pm 0.15 \{\rm meV}$, and $J_4 = 6.24 \pm 0.95 \{\rm meV}$, describes these measured results well. These uncertainties are successfully determined by the noise estimation. The relations among the estimated magnetic interactions or physical quantities are also discussed. The obtained effective model is useful to predict hard-to-measure properties such as spin gap, spin configuration at the ground state, magnetic specific heat, and magnetic entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源