论文标题

在任意维度中运行式粒子的通用特性

Universal Properties of a Run-and-Tumble Particle in Arbitrary Dimension

论文作者

Mori, Francesco, Doussal, Pierre Le, Majumdar, Satya N., Schehr, Gregory

论文摘要

我们考虑在$ d $尺寸中的主动运行粒子(RTP),从原点开始,并在时间间隔$ [0,t] $上发展。我们检查了RTP动力学的三个不同模型:具有瞬时倒塌的标准RTP模型,具有瞬时运行的变体以及一个通用模型,其中倒塌和运行都是非实用的。对于每个模型,我们使用Sparre Andersen定理进行离散的随机步行,以准确计算$ x $组件不会更改为$ t $的概率,这表明它不取决于$ d $。由于此结果,我们准确地计算了其他$ x $ - 组件的属性,即最大时间和记录统计信息的分布,表明它们是通用的,即它们不依赖$ d $。此外,我们表明,如果每次翻滚后的粒子的速度$ v $是随机的,则从一般概率分布中得出。我们的发现通过数值模拟证实。这些结果中的一些已在最近的一封信中宣布[Phys。莱特牧师。 124,090603(2020)]。

We consider an active run-and-tumble particle (RTP) in $d$ dimensions, starting from the origin and evolving over a time interval $[0,t]$. We examine three different models for the dynamics of the RTP: the standard RTP model with instantaneous tumblings, a variant with instantaneous runs and a general model in which both the tumblings and the runs are non-instantaneous. For each of these models, we use the Sparre Andersen theorem for discrete-time random walks to compute exactly the probability that the $x$ component does not change sign up to time $t$, showing that it does not depend on $d$. As a consequence of this result, we compute exactly other $x$-component properties, namely the distribution of the time of the maximum and the record statistics, showing that they are universal, i.e. they do not depend on $d$. Moreover, we show that these universal results hold also if the speed $v$ of the particle after each tumbling is random, drawn from a generic probability distribution. Our findings are confirmed by numerical simulations. Some of these results have been announced in a recent Letter [Phys. Rev. Lett. 124, 090603 (2020)].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源