论文标题

智能反射表面的强大设计辅助味o系统

Robust Design for Intelligent Reflecting Surfaces Assisted MISO Systems

论文作者

Zhang, Jiezhi, Zhang, Yu, Zhong, Caijun, Zhang, Zhaoyang

论文摘要

在这项工作中,我们研究了在不完美的通道状态信息(CSI)下,智能反射表面(IRS)辅助多重输入单输出(MISO)无线系统的统计上强大的波束形成设计,其中假定通道估计误差为附加性高斯。我们旨在共同优化发射/接收波束形式和IRS相移,以最大程度地减少用户的平均平方误差(MSE)。特别是,为了解决非凸优化问题,通过利用交替优化和大型最小化技术来开发有效的算法。仿真结果表明,在存在CSI误差的情况下,所提出的方案实现了稳健的MSE性能,并且显着优于常规的非稳定方法。

In this work, we study the statistically robust beamforming design for an intelligent reflecting surfaces (IRS) assisted multiple-input single-output (MISO) wireless system under imperfect channel state information (CSI), where the channel estimation errors are assumed to be additive Gaussian. We aim at jointly optimizing the transmit/receive beamformers and IRS phase shifts to minimize the average mean squared error (MSE) at the user. In particular, to tackle the non-convex optimization problem, an efficient algorithm is developed by capitalizing on alternating optimization and majorization-minimization techniques. Simulation results show that the proposed scheme achieves robust MSE performance in the presence of CSI error, and substantially outperforms conventional non-robust methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源