论文标题

具有不连续数据的一种准线性系统的薄弱解决方案的精确摩尔人的规律性

Precise Morrey regularity of the weak solutions to a kind of quasilinear systems with discontinuous data

论文作者

Fattorusso, Luisa, Softova, Lubomira

论文摘要

我们考虑了具有不规则边界的域中的一类准线性椭圆系统的Dirichlet问题。主要部分满足了组件的强制性条件,非线性项是carathéodory地图,具有$ x $的莫雷规律性,并相对于其他变量验证了受控的增长条件。我们已经获得了弱解决方案的界限到允许采用迭代程序以找到其梯度的最佳规律性的问题。

We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Carathéodory maps having Morrey regularity in $x$ and verifying controlled growth conditions with respect to the other variables. We have obtained boundedness of the weak solution to the problem that permits to apply an iteration procedure in order to find optimal Morrey regularity of its gradient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源