论文标题
在Hecke Orbit猜想的Pel型Shimura品种
On The Hecke Orbit Conjecture for PEL Type Shimura Varieties
论文作者
论文摘要
Hecke Orbit猜想断言,Shimura品种中的每个Prime to-P $ hecke轨道在包含它的中央叶子中都很稠密。在本文中,当$ p $是良好的良好降低的素数时,我们证明了牛顿型牛顿品种中牛顿层的某些不可还原组成部分的猜想。我们的方法概括了Chai和Oort的Siegel模块化品种方法。
The Hecke orbit conjecture asserts that every prime-to-$p$ Hecke orbit in a Shimura variety is dense in the central leaf containing it. In this paper, we prove the conjecture for certain irreducible components of Newton strata in Shimura varieties of PEL type A and C, when $p$ is an unramified prime of good reduction. Our approach generalizes Chai and Oort's method for Siegel modular varieties.