论文标题

分散供应链中的随机生物量混合问题

A Stochastic Biomass Blending Problem in Decentralized Supply Chains

论文作者

Eksioglu, Sandra D., Gulcan, Berkay, Roni, Mohammad, Mason, Scott

论文摘要

混合不同物理或化学特性的生物质材料提供了一个机会,可以调整原料质量以满足转换平台的规格。我们提出了一个模型,该模型可以以最低成本来确定生物量正确组合,以优化热化学转换过程的性能。这是一个机会构成编程(CCP)模型,它考虑了生物量质量的随机性质。提出的CCP模型可确保大部分时间都满足受生物量物理和化学性质影响的过程要求。我们考虑两个问题设置,一个集中式和一个分散的供应链。我们提出了一个混合企业线性程序,以对集中设置中的混合问题进行建模,并在分散设置中建模混合问题。我们使用样本平均值近似(SAA)方法来近似机会约束,并提出解决方案算法来求解此近似值。我们使用数十亿吨研究提供的数据为南卡罗来纳州开发了一项案例研究。根据我们的结果,确定的混合物主要由松木和软木残基组成。集中式供应链的成本低2至6%,这表明集中决策的假设导致低估了供应链中的成本。

Blending biomass materials of different physical or chemical properties provides an opportunity to adjust the quality of the feedstock to meet the specifications of the conversion platform. We propose a model which identifies the right mix of biomass to optimize the performance of the thermochemical conversion process at the minimum cost. This is a chance-constraint programming (CCP) model which takes into account the stochastic nature of biomass quality. The proposed CCP model ensures that process requirements, which are impacted by physical and chemical properties of biomass, are met most of the time. We consider two problem settings, a centralized and a decentralized supply chain. We propose a mixed-integer linear program to model the blending problem in the centralized setting and a bilevel program to model the blending problem in the decentralized setting. We use the sample average approximation (SAA) method to approximate the chance constraints, and propose solution algorithms to solve this approximation. We develop a case study for South Carolina using data provided by the Billion Ton Study. Based on our results, the blends identified consist mainly of pine and softwood residues. The cost of the centralized supply chain is 2 to 6% lower, which shows that the assumption of centralized decision making leads to underestimating costs in the supply chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源