论文标题

机器学习的原子间电位使石墨烯/硼苯杂体中晶格导热率的第一原理多尺度建模

Machine-Learning Interatomic Potentials Enable First-Principles Multiscale Modeling of Lattice Thermal Conductivity in Graphene/Borophene Heterostructures

论文作者

Mortazavi, Bohayra, Podryabinkin, Evgeny V., Roche, Stephan, Rabczuk, Timon, Zhuang, Xiaoying, Shapeev, Alexander V.

论文摘要

凝结物质中计算建模的最终目标之一是能够准确地计算出最少的经验信息的材料属性。诸如密度功能理论(DFT)之类的第一原理方法在电子特性上提供了最佳的准确性,但它们仅限于多达几百种或大多数原子的系统。另一方面,经典的分子动力学(CMD)模拟和有限元方法(FEM)被广泛用于研究更大,更现实的系统,但相反取决于经验信息。在这里,我们表明,在短的AB-Initio分子动力学轨迹上训练了在短期AB-Initio分子动力学轨迹上训练的机器学习间势型(MLIP),可以使第一原理多尺度建模,其中DFT模拟可以层次桥接以有效地模拟宏观结构。作为一个案例研究,我们分析了最近在实验中合成的共面石墨烯/硼苯杂体的晶格导热率(Sci。Adv。2019; 5:EAAX6444),目前没有可行的古典建模替代方案。我们的基于MLIP的方法可以有效预测石墨烯和唯一原始阶段的晶格导热率,复杂石墨烯/硼苯界面的导热率,并随后能够研究沿着连续水平的异质结构的有效热传输。这项工作强调了MLIP可以有效且方便地使用DFT/CMD/FEM模拟的层次雇用来实现第一原理多尺度建模,从而扩展了新型纳米结构的计算设计能力。

One of the ultimate goals of computational modeling in condensed matter is to be able to accurately compute materials properties with minimal empirical information. First-principles approaches such as the density functional theory (DFT) provide the best possible accuracy on electronic properties but they are limited to systems up to a few hundreds, or at most thousands of atoms. On the other hand, classical molecular dynamics (CMD) simulations and finite element method (FEM) are extensively employed to study larger and more realistic systems, but conversely depend on empirical information. Here, we show that machine-learning interatomic potentials (MLIPs) trained over short ab-initio molecular dynamics trajectories enable first-principles multiscale modeling, in which DFT simulations can be hierarchically bridged to efficiently simulate macroscopic structures. As a case study, we analyze the lattice thermal conductivity of coplanar graphene/borophene heterostructures, recently synthesized experimentally (Sci. Adv. 2019; 5: eaax6444), for which no viable classical modeling alternative is presently available. Our MLIP-based approach can efficiently predict the lattice thermal conductivity of graphene and borophene pristine phases, the thermal conductance of complex graphene/borophene interfaces and subsequently enable the study of effective thermal transport along the heterostructures at continuum level. This work highlights that MLIPs can be effectively and conveniently employed to enable first-principles multiscale modeling via hierarchical employment of DFT/CMD/FEM simulations, thus expanding the capability for computational design of novel nanostructures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源