论文标题
大规模市场均衡计算的一阶方法
First-Order Methods for Large-Scale Market Equilibrium Computation
论文作者
论文摘要
市场平衡是一个解决方案概念,具有许多应用,例如数字广告市场,公平部门和资源共享。对于许多类别的公用事业功能,可以通过凸面程序捕获平衡。我们开发了一个简单的一阶方法,适用于为大规模市场求解这些凸面程序。我们专注于三个实际上相关的公用事业类别:线性,准线性和Leontief实用程序。使用每个公用事业类别下市场平衡的结构特性,我们表明可以将相应的凸程序重新构建为在多面体集合上优化结构化的平滑凸功能,为此,预测的梯度可实现线性收敛。为此,我们在弱化的强凸状条件下利用了最近的线性收敛结果,并进一步完善了现有收敛结果中的相关常数。然后,我们表明,具有实用线路搜索方案的近端梯度(投影梯度的概括)在近端-PL条件下实现了线性收敛,这是凸复合问题的最近开发的误差绑定条件。对于准线性实用程序,我们表明,适用于新凸面程序的镜下降可实现均匀的近期收敛,并产生一种比例响应动力学的形式,这是一种针对最初用于线性实用性开发的计算市场均衡的优雅,可解释的算法。数值实验表明,比例响应动力学对于计算近似市场均衡是高度有效的,而在需要更高准确的解决方案时,使用线路搜索的梯度可能会更快。
Market equilibrium is a solution concept with many applications such as digital ad markets, fair division, and resource sharing. For many classes of utility functions, equilibria can be captured by convex programs. We develop simple first-order methods suitable for solving these convex programs for large-scale markets. We focus on three practically-relevant utility classes: linear, quasilinear, and Leontief utilities. Using structural properties of market equilibria under each utility class, we show that the corresponding convex programs can be reformulated as optimization of a structured smooth convex function over a polyhedral set, for which projected gradient achieves linear convergence. To do so, we utilize recent linear convergence results under weakened strong-convexity conditions, and further refine the relevant constants in existing convergence results. Then, we show that proximal gradient (a generalization of projected gradient) with a practical linesearch scheme achieves linear convergence under the Proximal-PL condition, a recently developed error bound condition for convex composite problems. For quasilinear utilities, we show that Mirror Descent applied to a new convex program achieves sublinear last-iterate convergence and yields a form of Proportional Response dynamics, an elegant, interpretable algorithm for computing market equilibria originally developed for linear utilities. Numerical experiments show that Proportional Response dynamics is highly efficient for computing approximate market equilibria, while projected gradient with linesearch can be much faster when higher-accuracy solutions are needed.