论文标题
Banach代数中的广义雅各布森的引理
Generalized Jacobson's lemma in a Banach algebra
论文作者
论文摘要
让A成为Banach代数,让A; b; c 2 a满足A(ba)^2 = abaca = acaba =(ac)^2a:我们证明an^d中的1 -ba \ in a^d in a^d in a^d。在这种情况下,(1-ac)^d = 1-a(1-ba)^π(1-α(1+ba))^{ - 1} bac(1+ac)+a((1-ba)^d)bac。这扩展了Corach的G-Drazin倒数的主要结果(Comm。Elgebra,41(2013),520 {531)。
Let A be a Banach algebra, and let a; b; c 2 A satisfying a(ba)^2 = abaca = acaba = (ac)^2a: We prove that 1 - ba\in A^d if and only if 1 - ac \in A^d. In this case, (1-ac)^d =1-a(1-ba)^π(1-α(1+ba))^{-1}bac (1+ac)+a((1-ba)^d)bac. This extends the main result on g-Drazin inverse of Corach (Comm. Algebra, 41(2013), 520{531).