论文标题
基于控制条件矩的随机微分方程的弱变量尺寸方案
Weak variable step-size schemes for stochastic differential equations based on controlling conditional moments
论文作者
论文摘要
我们解决由独立布朗运动驱动的随机微分方程的弱数值解(简称SDE)。本文开发了一种新的方法来设计自适应策略,以自动确定计算SDE解决方案平滑函数的平均值的数值方案的步骤尺寸。首先,我们引入了一种用于构建SDE的变量级弱方案的通用方法,该方法基于控制数值集成符的第一个条件矩与对应于额外的弱近似相对应的匹配。为此,我们使用某些不涉及采样随机变量的局部差异函数。给出了设计合适的差异功能和选择起始步骤尺寸的精确方向。其次,我们引入了一个可变的台阶大小欧拉方案,并通过外推通过可变的步进二阶弱方案。最后,提出了数值模拟,以显示引入的变量尺寸策略的潜力以及在计算扩散功能期望的计算中,以克服常规固定步长方案的已知不稳定性问题。
We address the weak numerical solution of stochastic differential equations driven by independent Brownian motions (SDEs for short). This paper develops a new methodology to design adaptive strategies for determining automatically the step-sizes of the numerical schemes that compute the mean values of smooth functions of the solutions of SDEs. First, we introduce a general method for constructing variable step-size weak schemes for SDEs, which is based on controlling the match between the first conditional moments of the increments of the numerical integrator and the ones corresponding to an additional weak approximation. To this end, we use certain local discrepancy functions that do not involve sampling random variables. Precise directions for designing suitable discrepancy functions and for selecting starting step-sizes are given. Second, we introduce a variable step-size Euler scheme, together with a variable step-size second order weak scheme via extrapolation. Finally, numerical simulations are presented to show the potential of the introduced variable step-size strategy and the adaptive scheme to overcome known instability problems of the conventional fixed step-size schemes in the computation of diffusion functional expectations.