论文标题
$ t [su(n)] $的拓扑扭曲索引
Topologically twisted index of $T[SU(N)]$ at large $N$
论文作者
论文摘要
我们在很大的$ n $限制下计算了3D $ t [su(n)] $理论的拓扑扭曲索引,即分区在$σ_{\ Mathfrak {\ Mathfrak {g}} \ times s^1 $上,在Riemann Surface $σ__ {\ Mathfrak} $上带有拓扑表面的拓扑扭曲。为了提供该数量的表达式,我们利用了五个维箭量理论获得的一些最新结果。如果发生通用扭曲,我们正确地重现了可以嵌入全息双重溶液中的通用黑洞的熵。
We compute, in the large $N$ limit, the topologically twisted index of the 3d $T[SU(N)]$ theory, namely the partition function on $Σ_{\mathfrak{g}} \times S^1$, with a topological twist on the Riemann surface $Σ_{\mathfrak{g}}$. To provide an expression for this quantity, we take advantage of some recent results obtained for five dimensional quiver gauge theories. In case of a universal twist, we correctly reproduce the entropy of the universal black hole that can be embedded in the holographically dual solution.