论文标题
Monge-Ampère特征值问题与一般初始数据的迭代方案的收敛
Convergence of an iterative scheme for the Monge-Ampère eigenvalue problem with general initial data
论文作者
论文摘要
在此注释中,我们重新审视了一个迭代计划,该计划是由于Abedin和Kitagawa(Monge-AmpèreEigenvalue问题的逆迭代,Proc。Amer。Math。Math。Soc。148(2020),第11、4875---4886号编号),解决了Monge-Ammge-Ammge-ampèreeigenvalue问题的一般界限。使用零件的非线性集成,我们表明该方案为所有凸初始数据收敛,并具有有限和非零瑞利商的非零MONGE-AMPèreEigenfunction。
In this note, we revisit an iterative scheme, due to Abedin and Kitagawa (Inverse Iteration for the Monge-Ampère Eigenvalue Problem, Proc. Amer. Math. Soc. 148 (2020), no. 11, 4875--4886), to solve the Monge-Ampère eigenvalue problem on a general bounded convex domain. Using a nonlinear integration by parts, we show that the scheme converges for all convex initial data having finite and nonzero Rayleigh quotient to a nonzero Monge-Ampère eigenfunction.