论文标题

快速增加延迟性近似Gibbs采样器的贝叶斯高斯过程回归

Fast increased fidelity approximate Gibbs samplers for Bayesian Gaussian process regression

论文作者

Moran, Kelly R., Wheeler, Matthew W.

论文摘要

高斯过程(GP)的使用得到了有效的采样算法,丰富的方法论文献和强大的理论基础的支持。但是,由于其过度的计算和存储需求,贝叶斯模型中确切的GP的使用仅限于包含数千个观察结果的问题。采样需要以$ \ Mathcal {o}(n^3)的比例矩阵操作,其中$ n $是唯一输入的数量。存储单个矩阵量表在$ \ Mathcal {o}(n^2),$,并且可以快速淹没大多数现代计算机的资源。为了克服这些瓶颈,我们使用包含GP后协方差的矩阵的矩阵近似$ \ Mathcal {H} $矩阵近似开发采样算法。 These matrices can approximate the true conditional covariance matrix within machine precision and allow for sampling algorithms that scale at $\mathcal{O}(n \ \mbox{log}^2 n)$ time and storage demands scaling at $\mathcal{O}(n \ \mbox{log} \ n).$ We also describe how these algorithms can be used as building在$ \ mathcal {o}(d \ n \ \ \ mbox {log}^2 n)$上建模更高维表面的块,其中$ d $是使用一维gps的张量产品,是所考虑的表面的尺寸。尽管据我们所知,当$ n $很大时,已经提出了各种可扩展的过程来近似贝叶斯GP推断,但这些方法都没有表明近似值的kullback-leibler差异与真实后验的差异可以任意地变小,并且可能比有限的计算机算术所提供的近似值差。我们描述了$ \ Mathcal {h} - $矩阵,使用这些矩阵使用这些矩阵进行一维GP提供有效的Gibbs采样器,为更高维表面提供了拟议的扩展,并使用模拟和真实的数据集研究了这种快速的Fidelity近似GP,FIFA-GP的性能。

The use of Gaussian processes (GPs) is supported by efficient sampling algorithms, a rich methodological literature, and strong theoretical grounding. However, due to their prohibitive computation and storage demands, the use of exact GPs in Bayesian models is limited to problems containing at most several thousand observations. Sampling requires matrix operations that scale at $\mathcal{O}(n^3),$ where $n$ is the number of unique inputs. Storage of individual matrices scales at $\mathcal{O}(n^2),$ and can quickly overwhelm the resources of most modern computers. To overcome these bottlenecks, we develop a sampling algorithm using $\mathcal{H}$ matrix approximation of the matrices comprising the GP posterior covariance. These matrices can approximate the true conditional covariance matrix within machine precision and allow for sampling algorithms that scale at $\mathcal{O}(n \ \mbox{log}^2 n)$ time and storage demands scaling at $\mathcal{O}(n \ \mbox{log} \ n).$ We also describe how these algorithms can be used as building blocks to model higher dimensional surfaces at $\mathcal{O}(d \ n \ \mbox{log}^2 n)$, where $d$ is the dimension of the surface under consideration, using tensor products of one-dimensional GPs. Though various scalable processes have been proposed for approximating Bayesian GP inference when $n$ is large, to our knowledge, none of these methods show that the approximation's Kullback-Leibler divergence to the true posterior can be made arbitrarily small and may be no worse than the approximation provided by finite computer arithmetic. We describe $\mathcal{H}-$matrices, give an efficient Gibbs sampler using these matrices for one-dimensional GPs, offer a proposed extension to higher dimensional surfaces, and investigate the performance of this fast increased fidelity approximate GP, FIFA-GP, using both simulated and real data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源