论文标题

数字乳房合成图像的深度学习重建,以进行准确的乳房密度和患者特异性辐射剂量估计

Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation

论文作者

Teuwen, Jonas, Moriakov, Nikita, Fedon, Christian, Caballo, Marco, Reiser, Ingrid, Bakic, Pedrag, García, Eloy, Diaz, Oliver, Michielsen, Koen, Sechopoulos, Ioannis

论文摘要

乳房X线摄影的二维性质使得估计整体乳房密度具有挑战性,并估算了真正的患者特异性辐射剂量。数字乳房断层合成(DBT)是一种伪-3D技术,现在通常用于乳腺癌筛查和诊断。尽管如此,直到现在,尚未使用DBT中严重有限的三维信息来估计真正的乳房密度或患者特异性剂量。这项研究提出了基于针对这些任务的深入学习的DBT的重建算法。我们将算法命名为DBTOR的算法是基于展开的近二重优化方法。近端运算符被卷积神经网络取代,模型中包括先验知识。这通过为DBT提供的胸部厚度信息提供了胸部厚度信息,从而扩展了基于深度学习的重建模型的先前工作。使用来自两个不同来源的虚拟患者幻象进行模型的训练和测试。估计了重建性能以及乳房密度和辐射剂量的估计准确性,表现出很高的精度(密度<+/- 3%;剂量<+/- 20%)而没有偏见,在当前的最新最新时间表上有了显着改善。这项工作还为开发基于深度学习的重建算法的基础奠定了基础,用于放射科医生的图像解释任务。

The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learning-based reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density <+/-3%; dose <+/-20%) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源