论文标题

通过动力学方法控制肿瘤生长分布

Control of tumour growth distributions through kinetic methods

论文作者

Preziosi, L., Toscani, G., Zanella, M.

论文摘要

肿瘤生长的数学建模具有悠久的历史,并以几种不同的方式进行了数学形式。在这里,我们可以使用统计物理学的数学工具进行连续分布解决问题。在此范围内,我们引入了一种新型的生长动力学模型,该模型突出了微观跃迁在确定各种平衡分布中的作用。与其他方法的不同,介质描述在基本相互作用方面允许设计精确的微观反馈控制疗法,能够影响自然肿瘤的生长并减轻大尺寸肿瘤所涉及的危险因素。我们进一步表明,在适当的缩放下,自由和受控的生长模型对应于fokker-planck类型方程,用于生长分布,具有变化和漂移的可变系数,在自由情况下,它们的稳定溶液由一类普遍的γ密度给出,这些密度可以用脂肪的尾巴来表征。在此缩放中,反馈控制会产生漂移算子的明确修饰,该算子被证明可以强烈修改肿瘤大小的新兴分布。特别是,在存在疗法的情况下的大小分布在所有增长模型中都表现出细小的尾巴,这对应于对危险因素的明显缓解。还提出了证实理论分析的数值结果。

The mathematical modeling of tumor growth has a long history, and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using mathematical tools from statistical physics. To this extent, we introduce a novel kinetic model of growth which highlights the role of microscopic transitions in determining a variety of equilibrium distributions. At variance with other approaches, the mesoscopic description in terms of elementary interactions allows to design precise microscopic feedback control therapies, able to influence the natural tumor growth and to mitigate the risk factors involved in big sized tumors. We further show that under a suitable scaling both the free and controlled growth models correspond to Fokker--Planck type equations for the growth distribution with variable coefficients of diffusion and drift, whose steady solutions in the free case are given by a class of generalized Gamma densities which can be characterized by fat tails. In this scaling the feedback control produces an explicit modification of the drift operator, which is shown to strongly modify the emerging distribution for the tumor size. In particular, the size distributions in presence of therapies manifest slim tails in all growth models, which corresponds to a marked mitigation of the risk factors. Numerical results confirming the theoretical analysis are also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源