论文标题

在多年的微观集体风险模型上

On a Multi-Year Microlevel Collective Risk Model

论文作者

Oh, Rosy, Jeong, Himchan, Ahn, Jae Youn, Valdez, Emiliano A.

论文摘要

对于典型的保险投资组合,短期内的索赔过程(通常为一年)的特征是观察索赔的频率以及相关索赔的严重性。集体风险模型将该投资组合描述为索赔金额汇总的随机总和。在经典框架中,为简单起见,索赔频率和索赔严重程度被认为是相互独立的。但是,放松这一独立性假设的兴趣越来越大,这对于实用保险比率更现实和有用。虽然共同的线程一直在单个时期内捕获频率和总体严重程度之间的依赖性,但OH等人的工作。 (2020a)为在个体严重性之间增加捕获依赖性提供了有趣的扩展。在本文中,我们将这些作品扩展在一个框架内,在该框架中,我们拥有多年的微观频率和严重性组合。这使我们能够开发一个因素模型框架,该框架捕获了多年来索赔频率和索赔严重性之间的各种依赖性。因此,这是对一年依赖性频率模型的早期作品的明显扩展以及用于捕获索赔串行依赖性的随机效应模型。我们专注于使用椭圆形的家族来建模依赖性的结果。本文进一步介绍了如何使用新加坡保险公司引起的说明性索赔数据来校准所提出的模型。估计的结果提供了我们模型捕获的所有依赖性的有力证据。

For a typical insurance portfolio, the claims process for a short period, typically one year, is characterized by observing frequency of claims together with the associated claims severities. The collective risk model describes this portfolio as a random sum of the aggregation of the claim amounts. In the classical framework, for simplicity, the claim frequency and claim severities are assumed to be mutually independent. However, there is a growing interest in relaxing this independence assumption which is more realistic and useful for the practical insurance ratemaking. While the common thread has been capturing the dependence between frequency and aggregate severity within a single period, the work of Oh et al. (2020a) provides an interesting extension to the addition of capturing dependence among individual severities. In this paper, we extend these works within a framework where we have a portfolio of microlevel frequencies and severities for multiple years. This allows us to develop a factor copula model framework that captures various types of dependence between claim frequencies and claim severities over multiple years. It is therefore a clear extension of earlier works on one-year dependent frequency-severity models and on random effects model for capturing serial dependence of claims. We focus on the results using a family of elliptical copulas to model the dependence. The paper further describes how to calibrate the proposed model using illustrative claims data arising from a Singapore insurance company. The estimated results provide strong evidence of all forms of dependencies captured by our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源