论文标题

加速线性求解器,用于c ++元图的Stokes问题

Accelerating linear solvers for Stokes problems with C++ metaprogramming

论文作者

Demidov, Denis, Mu, Lin, Wang, Bin

论文摘要

大稀疏马鞍点系统的有效解决方案在计算流体力学中非常重要。不连续的Galerkin有限元方法在不可压缩的流量问题上变得越来越流行,但是由于高计算成本,它们的应用受到限制。我们描述了C ++编程技术,这些技术可能有助于加速线性求解器的此类问题。该方法基于基于策略的设计模式和部分模板专业化,并在开源AMGCL库中实现。效率以加速迭代求解器的迭代求解器的示例来证明,这是不连续的galerkin有限元方法。该实现允许通过调整模板参数来选择求解器的算法组件,而无需对代码库进行任何更改。可以切换系统矩阵以使用静态大小的块来存储非零值,或使用混合精度解决方案,从而导致高达4倍的加速,并将算法的内存足迹降低约40 \%。我们评估了3个基准问题的整体和复合预处理策略。将所提出的解决方案的性能与多线程直接pardiso求解器和平行的迭代PETSC求解器进行了比较。

The efficient solution of large sparse saddle point systems is very important in computational fluid mechanics. The discontinuous Galerkin finite element methods have become increasingly popular for incompressible flow problems but their application is limited due to high computational cost. We describe the C++ programming techniques that may help to accelerate linear solvers for such problems. The approach is based on the policy-based design pattern and partial template specialization, and is implemented in the open source AMGCL library. The efficiency is demonstrated with the example of accelerating an iterative solver of a discontinuous Galerkin finite element method for the Stokes problem. The implementation allows selecting algorithmic components of the solver by adjusting template parameters without any changes to the codebase. It is possible to switch the system matrix to use small statically sized blocks to store the nonzero values, or use a mixed precision solution, which results in up to 4 times speedup, and reduces the memory footprint of the algorithm by about 40\%. We evaluate both monolithic and composite preconditioning strategies for the 3 benchmark problems. The performance of the proposed solution is compared with a multithreaded direct Pardiso solver and a parallel iterative PETSc solver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源