论文标题
减少监督代表学习的尺寸
Deep Dimension Reduction for Supervised Representation Learning
论文作者
论文摘要
监督表示学习的目的是为预测构建有效的数据表示。在高维复杂数据的理想非参数表示的所有特征中,足够,低维和脱离是最重要的。我们提出了一种具有这些特征的深层降低方法来学习表示表示。提出的方法是对足够降低方法的非参数概括。我们制定理想的表示学习任务是找到非参数表示,该任务最小化了表征有条件独立性并促进人口层面的分离的目标函数。然后,我们使用深层神经网络在非参数上估计样品级别的目标表示。我们表明,估计的深度非参数表示是一致的,因为其多余的风险会收敛到零。我们使用模拟和真实基准数据的广泛数值实验表明,在分类和回归背景下,所提出的方法比几种现有的降低方法和标准深度学习模型具有更好的性能。
The goal of supervised representation learning is to construct effective data representations for prediction. Among all the characteristics of an ideal nonparametric representation of high-dimensional complex data, sufficiency, low dimensionality and disentanglement are some of the most essential ones. We propose a deep dimension reduction approach to learning representations with these characteristics. The proposed approach is a nonparametric generalization of the sufficient dimension reduction method. We formulate the ideal representation learning task as that of finding a nonparametric representation that minimizes an objective function characterizing conditional independence and promoting disentanglement at the population level. We then estimate the target representation at the sample level nonparametrically using deep neural networks. We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero. Our extensive numerical experiments using simulated and real benchmark data demonstrate that the proposed methods have better performance than several existing dimension reduction methods and the standard deep learning models in the context of classification and regression.