论文标题

Calderón-Zygmund操作员在同质类型的空间上有两个重量不平等

A two weight inequality for Calderón-Zygmund operators on spaces of homogeneous type with applications

论文作者

Duong, Xuan Thinh, Li, Ji, Sawyer, Eric T., Vempati, Manasa N., Wick, Brett D., Yang, Dongyong

论文摘要

让$(x,d,μ)$成为Coifman和Weiss的同质类型的空间,即$ D $是$ x $的准公制,$ x $,$μ$是满足双倍条件的积极措施。假设$ u $和$ v $是$(x,d,μ)$的两个本地有限的正骨措施。在满足侧面条件的一对权重的前提下,我们表征了$ l^{2}(u)$ to $ l^{2}(v)$的calderón-zygmund操作员$ t $ $ t $。对于每个Cube $ b \ subset x $,我们都有以下测试条件,$ \ mathbf {1} _ {b} $作为$ b $ \ begin {equation*} \ vert t(u \ mathbf {1} _ {1} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b}) \ Mathcal {t} \ Vert 1_ {B} \ Vert _ {l^{2}(u)},\ end {equation*} \ begin {equication*} \ vert t^{\ ast} u)} \ leq \ mathcal {t} \ vert 1_ {b} \ vert _ {l^{2}(v)}。 \ end {等式*}证明使用停止立方体和电晕分解,源自纳扎罗夫,Treil和Volberg的作品以及关键的侧面条件。

Let $(X,d,μ)$ be a space of homogeneous type in the sense of Coifman and Weiss, i.e. $d$ is a quasi metric on $X$ and $μ$ is a positive measure satisfying the doubling condition. Suppose that $u$ and $v$ are two locally finite positive Borel measures on $(X,d,μ)$. Subject to the pair of weights satisfying a side condition, we characterize the boundedness of a Calderón--Zygmund operator $T$ from $L^{2}(u)$ to $L^{2}(v)$ in terms of the $A_{2}$ condition and two testing conditions. For every cube $B\subset X$, we have the following testing conditions, with $\mathbf{1}_{B}$ taken as the indicator of $B$ \begin{equation*} \Vert T(u\mathbf{1}_{B})\Vert _{L^{2}(B, v)}\leq \mathcal{T}\Vert 1_{B}\Vert _{L^{2}(u)}, \end{equation*} \begin{equation*} \Vert T^{\ast }(v\mathbf{1}_{B})\Vert _{L^{2}(B, u)}\leq \mathcal{T}\Vert 1_{B}\Vert _{L^{2}(v)}. \end{equation*} The proof uses stopping cubes and corona decompositions originating in work of Nazarov, Treil and Volberg, along with the pivotal side condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源