论文标题
机器学习预警系统:巴西医院的多中心验证
A Machine Learning Early Warning System: Multicenter Validation in Brazilian Hospitals
论文作者
论文摘要
临床恶化的早期认识是降低住院病发病率和死亡率的主要步骤之一。医院中临床恶化识别的挑战性任务在于医疗保健从业者的日常日常工作,在电子健康记录(EHRS)中存储的未连接的患者数据以及低精度得分的使用情况。由于与重症监护病房相比,由于医院病房的关注较少,因此我们假设,当平台连接到EHR流时,危险情况的意识将大大提高,因此可以帮助医疗团队。随着机器学习的应用,该系统能够考虑所有患者的病史,并通过使用高性能预测模型,启用了智能的预警系统。在这项工作中,我们使用了来自六家不同医院和7,540,389个数据点的121,089次医疗遭遇,我们将流行的病房协议与六种不同的可扩展机器学习方法进行了比较(三种是经典的机器学习模型,基于逻辑和概率的模型,以及三个梯度提升模型)。与当前的最新协议相比,最佳机器学习模型结果中AUC(接收器操作特性曲线下的AUC(接收器操作特征曲线)的优势)为25个百分点。这是通过算法(AUC为0.949)和通过交叉验证(AUC为0.961)的算法的概括(AUC)的概括所示。我们还执行实验以比较几个窗口尺寸,以证明使用五个患者时间戳的使用是合理的。示例数据集,实验和代码可用于复制性。
Early recognition of clinical deterioration is one of the main steps for reducing inpatient morbidity and mortality. The challenging task of clinical deterioration identification in hospitals lies in the intense daily routines of healthcare practitioners, in the unconnected patient data stored in the Electronic Health Records (EHRs) and in the usage of low accuracy scores. Since hospital wards are given less attention compared to the Intensive Care Unit, ICU, we hypothesized that when a platform is connected to a stream of EHR, there would be a drastic improvement in dangerous situations awareness and could thus assist the healthcare team. With the application of machine learning, the system is capable to consider all patient's history and through the use of high-performing predictive models, an intelligent early warning system is enabled. In this work we used 121,089 medical encounters from six different hospitals and 7,540,389 data points, and we compared popular ward protocols with six different scalable machine learning methods (three are classic machine learning models, logistic and probabilistic-based models, and three gradient boosted models). The results showed an advantage in AUC (Area Under the Receiver Operating Characteristic Curve) of 25 percentage points in the best Machine Learning model result compared to the current state-of-the-art protocols. This is shown by the generalization of the algorithm with leave-one-group-out (AUC of 0.949) and the robustness through cross-validation (AUC of 0.961). We also perform experiments to compare several window sizes to justify the use of five patient timestamps. A sample dataset, experiments, and code are available for replicability purposes.