论文标题

在独立性多项式的最大真实根上

On the largest real root of the independence polynomial of a unicyclic graph

论文作者

Beaton, Iain, Cameron, Ben

论文摘要

图$ g $的独立性多项式,表示为$ i(g,x)$,是针对每个大小的独立集数量的生成多项式。 $ i(g,x)$的根称为$ g $的\ textit {独立根}。众所周知,对于每个图$ g $,最小模量的独立根,表示为$ξ(g)$,都是真实的。所有图表上的关系$ \ prepeq $定义如下,$ h \ preceq g $ i时,仅当$ i(h,x)\ ge i(g,x)\ text {for All} x \ in [ξ(g),0],0]。$。 我们发现,相对于$ \ preceq $,找到给定订单的最大和最小连接的独并覆盖的独环图。这扩展了Csikvári的2013年工作,其中确定了给定订单的最大树木和最小树,还回答了同一工作中提出的一个空旷的问题。我们的结果的推论给出了所有连接的(覆盖良好的)独一图表中最小化和最大化$ξ(g)$的图形。我们还回答了奥布迪(Oboudi)在2018年提出的更多相关的公开问题,并反驳了从2008年起列维特(Levit)和曼德雷斯库(Mandrescu)引起的猜想。

The independence polynomial of a graph $G$, denoted $I(G,x)$, is the generating polynomial for the number of independent sets of each size. The roots of $I(G,x)$ are called the \textit{independence roots} of $G$. It is known that for every graph $G$, the independence root of smallest modulus, denoted $ξ(G)$, is real. The relation $\preceq$ on the set of all graphs is defined as follows, $H\preceq G$ if and only if $I(H,x)\ge I(G,x)\text{ for all }x\in [ξ(G),0].$ We find the maximum and minimum connected unicyclic and connected well-covered unicyclic graphs of a given order with respect to $\preceq$. This extends 2013 work by Csikvári where the maximum and minimum trees of a given order were determined and also answers an open question posed in the same work. Corollaries of our results give the graphs that minimize and maximize $ξ(G)$ among all connected (well-covered) unicyclic graphs. We also answer more related open questions posed by Oboudi in 2018 and disprove a conjecture due to Levit and Mandrescu from 2008.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源