论文标题

关于减少代数数的订单和索引的分布

On the distribution of the order and index for the reductions of algebraic numbers

论文作者

Sgobba, Pietro

论文摘要

令$α_1,\ ldots,α_r$为数字字段中的代数$ k $,生成$ r $ in $ k^\ times $的子组。我们在GRH下调查了$ k $的Primes $ \ Mathfrak P $的数量,以使每个订单(α_i\ bmod \ Mathfrak p)$的每个订单都在于与$α_i$相关的给定算术进程。我们还研究了Primes $ \ Mathfrak P $,其中$(α_i\ bmod \ Mathfrak P)$的索引是固定的整数,或者位于给定的整数中,每个$ i $。可以考虑$ \ Mathfrak P $的Frobenius共轭类别的其他条件。这些结果是从2006年开始的Ziegler定理的概括,这涉及此问题的$ r = 1 $。

Let $α_1,\ldots,α_r$ be algebraic numbers in a number field $K$ generating a subgroup of rank $r$ in $K^\times$. We investigate under GRH the number of primes $\mathfrak p$ of $K$ such that each of the orders of $(α_i\bmod\mathfrak p)$ lies in a given arithmetic progression associated to $α_i$. We also study the primes $\mathfrak p$ for which the index of $(α_i\bmod\mathfrak p)$ is a fixed integer or lies in a given set of integers for each $i$. An additional condition on the Frobenius conjugacy class of $\mathfrak p$ may be considered. Such results are generalizations of a theorem of Ziegler from 2006, which concerns the case $r=1$ of this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源