论文标题

城市自动驾驶应用程序的概率语义映射

Probabilistic Semantic Mapping for Urban Autonomous Driving Applications

论文作者

Paz, David, Zhang, Hengyuan, Li, Qinru, Xiang, Hao, Christensen, Henrik

论文摘要

统计学习和计算能力的最新进步使自动驾驶汽车技术能够以更快的速度发展。尽管以前引入的许多架构能够在高度动态的环境下运行,但其中许多限制在较小规模的部署中,由于相关的可伸缩性成本(HD)地图(HD)地图,需要持续维护,并且涉及乏味的手动标记。为了解决这个问题,我们建议将图像和预构建点云图信息融合在一起,以执行静态地标的自动和准确的标记,例如道路,人行道,人行横道,人行横道和车道。该方法对2D图像进行语义分割,将语义标签与点云图相关联,以将其准确地将它们定位在世界上,并利用混淆矩阵公式从语义点云中构造鸟类眼视图中的概率语义图。在城市环境中收集的数据的实验表明,该模型能够预测大多数道路功能,并且可以扩展以将道路功能自动纳入具有潜在的未来工作方向的高清图。

Recent advancements in statistical learning and computational abilities have enabled autonomous vehicle technology to develop at a much faster rate. While many of the architectures previously introduced are capable of operating under highly dynamic environments, many of these are constrained to smaller-scale deployments, require constant maintenance due to the associated scalability cost with high-definition (HD) maps, and involve tedious manual labeling. As an attempt to tackle this problem, we propose to fuse image and pre-built point cloud map information to perform automatic and accurate labeling of static landmarks such as roads, sidewalks, crosswalks, and lanes. The method performs semantic segmentation on 2D images, associates the semantic labels with point cloud maps to accurately localize them in the world, and leverages the confusion matrix formulation to construct a probabilistic semantic map in bird's eye view from semantic point clouds. Experiments from data collected in an urban environment show that this model is able to predict most road features and can be extended for automatically incorporating road features into HD maps with potential future work directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源