论文标题

FREDE:任何时间图嵌入

FREDE: Anytime Graph Embeddings

论文作者

Tsitsulin, Anton, Munkhoeva, Marina, Mottin, Davide, Karras, Panagiotis, Oseledets, Ivan, Müller, Emmanuel

论文摘要

图节点的低维表示或嵌入式的嵌入式促进了几项实用的数据科学和数据工程任务。由于这种嵌入在节点之间明确或隐式依赖于相似性度量,因此它们需要计算二次相似性矩阵,从而引起空间复杂性和嵌入质量之间的权衡。迄今为止,尚无图形嵌入工作结合(i)线性空间复杂性,(ii)非线性转换为其基础,以及(iii)非平凡质量保证。 在本文中,我们介绍了FREDE(频繁的方向嵌入),这是一个基于矩阵草图的嵌入图,结合了这三个desiderata。首先从观察到嵌入方法旨在保持相似性矩阵的行之间的协方差},弗雷德(Frede)迭代质量改善,而单独处理非线性ppr相似性矩阵的行分别处理,这些矩阵源自先进的型号嵌入方式},并在任何迭代中均等,并提供了在任何迭代,折叠式的近距离融合近似的过程中,由SVD。我们对尺寸尺寸的网络的实验评估表明,即使是基于节点相似性的10%,弗雷德(Frede)的性能几乎与SVD相同,并且针对不同数据科学任务中的最新嵌入方法的竞争性。

Low-dimensional representations, or embeddings, of a graph's nodes facilitate several practical data science and data engineering tasks. As such embeddings rely, explicitly or implicitly, on a similarity measure among nodes, they require the computation of a quadratic similarity matrix, inducing a tradeoff between space complexity and embedding quality. To date, no graph embedding work combines (i) linear space complexity, (ii) a nonlinear transform as its basis, and (iii) nontrivial quality guarantees. In this paper we introduce FREDE (FREquent Directions Embedding), a graph embedding based on matrix sketching that combines those three desiderata. Starting out from the observation that embedding methods aim to preserve the covariance among the rows of a similarity matrix}, FREDE iteratively improves on quality while individually processing rows of a nonlinearly transformed PPR similarity matrix derived from a state-of-the-art graph embedding method} and provides, at any iteration, column-covariance approximation guarantees in due course almost indistinguishable from those of the optimal approximation by SVD. Our experimental evaluation on variably sized networks shows that FREDE performs almost as well as SVD and competitively against state-of-the-art embedding methods in diverse data science tasks, even when it is based on as little as 10% of node similarities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源