论文标题

在非均匀版本的燃烧问题上

On a non-homogeneous version of a problem of Firey

论文作者

Saroglou, Christos

论文摘要

我们研究Monge-ampère类型方程的唯一性\ begin {equination} \ label {eq-abstract} det(u_ {ij}+Δ_{ij} ij {ij} u)_ {i,j = 1} $ s^{n-1} $,其中$ u $是在球体上的支撑函数的限制,$ s^{n-1} $的凸体机构,该凸体中包含其内部中的原点和$ g:(0,\ infty)\ to(0,\ infty)$是一个连续的功能。该问题是由Firey(1974)引发的,在情况下,在$ g(θ)=θ^{ - 1} $的情况下,问$ u \ equiv 1 $是否是(*)的唯一解决方案。最近,Brendle,Choi和Daskalopoulos $ [9] $证明,如果$ g(θ)=θ^{ - p} $,$ p> -n-1 $,则$ u $必须是恒定的,特别是为Firey问题提供了完整的解决方案。我们的主要目标是为(*)获得更广泛的功能家庭$ g $的独特性(或几乎唯一)的结果。我们的方法与$ [9] $开发的技术大不相同。

We investigate the uniqueness for the Monge-Ampère type equation \begin{equation} \label{eq-abstract} det(u_{ij}+δ_{ij}u)_{i,j=1}^{n-1}=G(u),\ \ \ \ \ \ \ (*)\end{equation}on $S^{n-1}$, where $u$ is the restriction of the support function on the sphere $S^{n-1}$ of a convex body that contains the origin in its interior and $G:(0,\infty)\to(0,\infty)$ is a continuous function. The problem was initiated by Firey (1974) who, in the case $G(θ)=θ^{-1}$, asked if $u\equiv 1$ is the unique solution to (*). Recently, Brendle, Choi and Daskalopoulos $[9]$ proved that if $G(θ)=θ^{-p}$, $p>-n-1$, then $u$ has to be constant, providing in particular a complete solution to Firey's problem. Our primary goal is to obtain uniqueness (or nearly uniqueness) results for (*) for a broader family of functions $G$. Our approach is very different than the techniques developed in $[9]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源