论文标题

光纤CNN:扩展面膜R-CNN以改善基于图像的纤维分析

FibeR-CNN: Expanding Mask R-CNN to Improve Image-Based Fiber Analysis

论文作者

Frei, Max, Kruis, Frank Einar

论文摘要

纤维形材料(例如碳纳米管)具有很大的意义,因为它们的独特特性以及它们可以施加的健康风险。不幸的是,基于图像的纤维分析仍然涉及手动注释,这是一个耗时且昂贵的过程。因此,我们建议使用基于区域的卷积神经网络(R-CNN)来自动执行此任务。 Mask R-CNN是用于语义分割任务的最广泛使用的R-CNN,在分析纤维形对象时很容易出现错误。因此,引入和验证了一种新的体系结构-Fiber -CNN。 Fiber-CNN结合了两个已建立的R-CNN架构(Mask和KePoint R-CNN),并为纤维宽度和长度的预测添加了其他网络头。结果,在新型的纤维图像测试数据集上,光纤CNN能够超过面膜R-CNN的平均平均精度33%(11个百分点)。

Fiber-shaped materials (e.g. carbon nano tubes) are of great relevance, due to their unique properties but also the health risk they can impose. Unfortunately, image-based analysis of fibers still involves manual annotation, which is a time-consuming and costly process. We therefore propose the use of region-based convolutional neural networks (R-CNNs) to automate this task. Mask R-CNN, the most widely used R-CNN for semantic segmentation tasks, is prone to errors when it comes to the analysis of fiber-shaped objects. Hence, a new architecture - FibeR-CNN - is introduced and validated. FibeR-CNN combines two established R-CNN architectures (Mask and Keypoint R-CNN) and adds additional network heads for the prediction of fiber widths and lengths. As a result, FibeR-CNN is able to surpass the mean average precision of Mask R-CNN by 33 % (11 percentage points) on a novel test data set of fiber images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源