论文标题
在一个和两个空间维度中,元符合两点函数的界限
Boundedness of meta-conformal two-point functions in one and two spatial dimensions
论文作者
论文摘要
元符合形式的不变性是一类新型的动态对称性类别,具有动态指数$ z = 1 $,并且与标准的正符符号不变性不同。可以直接从Lie代数发生器中读取元符合条件的病房身份,但是该过程隐含地假设共同变异的相关器应全神贯地依赖于时间和空间坐标。此外,该假设意味着共同变化的相关因子中的非物理奇异性。仔细的重新重新重新重新重新重新制定了双重元素元素病房的身份,结合了规律性的假设,可为共同变化的两点功能提供有限和正则表达式,包括$ d = 1 $和$ d = 2 $ d = 2 $空间维度。
Meta-conformal invariance is a novel class of dynamical symmetries, with dynamical exponent $z=1$, and distinct from the standard ortho-conformal invariance. The meta-conformal Ward identities can be directly read off from the Lie algebra generators, but this procedure implicitly assumes that the co-variant correlators should depend holomorphically on time- and space coordinates. Furthermore, this assumption implies un-physical singularities in the co-variant correlators. A careful reformulation of the global meta-conformal Ward identities in a dualised space, combined with a regularity postulate, leads to bounded and regular expressions for the co-variant two-point functions, both in $d=1$ and $d=2$ spatial dimensions.