论文标题

针对推荐系统的可区分神经输入搜索

Differentiable Neural Input Search for Recommender Systems

论文作者

Cheng, Weiyu, Shen, Yanyan, Huang, Linpeng

论文摘要

潜在因子模型是最新推荐系统的驱动力,其重要见解将原始输入特征矢量化成密度嵌入。不同特征嵌入的尺寸通常在经验上设置为相同的值,这限制了潜在因子模型的预测性能。现有作品提出了基于启发式或增强学习的方法,以搜索混合特征嵌入维度。出于效率的关注,这些方法通常从一组受限的候选维度组中选择嵌入维度。但是,这种限制将损害尺寸选择的灵活性,从而导致搜索结果的次优性能。在本文中,我们提出了可区分的神经输入搜索(DNIS),该方法通过连续放松和可区分的优化在更灵活的空间中搜索混合特征嵌入尺寸。关键思想是引入一个软选择层,该层控制每个嵌入维度的重要性,并根据模型的验证性能优化该层。 DNIS是模型不合时式,因此可以与现有的潜在因子模型无缝融合以进行推荐。我们在三个公共现实世界数据集上使用潜在因子模型的各种架构进行了实验,以进行评级预测,点击率速率(CTR)预测和TOP-K项目建议。结果表明,与现有的神经输入搜索方法相比,我们的方法具有最佳的预测性能,其嵌入参数较少,时间成本较小。

Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value empirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to model's validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源