论文标题

贝叶斯优化的随机高斯工艺上限限制

Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation

论文作者

Berk, Julian, Gupta, Sunil, Rana, Santu, Venkatesh, Svetha

论文摘要

为了提高贝叶斯优化的性能,我们开发了修改的高斯工艺上限置信度(GP-UCB)的采集函数。这是通过从分布中抽样探索解释权衡参数来完成的。我们证明,这允许更改预期的权衡参数,以更好地解决问题,而不会损害该功能的贝叶斯遗憾。我们还提供结果表明,在一系列现实世界和合成问题中,我们的方法比GP-UCB更好的性能。

In order to improve the performance of Bayesian optimisation, we develop a modified Gaussian process upper confidence bound (GP-UCB) acquisition function. This is done by sampling the exploration-exploitation trade-off parameter from a distribution. We prove that this allows the expected trade-off parameter to be altered to better suit the problem without compromising a bound on the function's Bayesian regret. We also provide results showing that our method achieves better performance than GP-UCB in a range of real-world and synthetic problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源