论文标题
对数校正抵抗
Logarithmic correction to resistance
论文作者
论文摘要
我们研究了$ \ mathbb {z}^d \ times \ mathbb {z} _+$当$ \ mathbb {z}^d \ times \ times \ mathbb {z} _+$中的初期无限的分支随机步行的痕迹。在适当的力矩假设下,我们表明root $ n $之间的电阻为$ O(n \ log^{ - ξ} n)对于$ξ> 0 $,不取决于模型的详细信息。
We study the trace of the incipient infinite oriented branching random walk in $\mathbb{Z}^d \times \mathbb{Z}_+$ when the dimension is $d = 6$. Under suitable moment assumptions, we show that the electrical resistance between the root and level $n$ is $O(n \log^{-ξ}n )$ for a $ξ> 0$ that does not depend on details of the model.