论文标题

对数校正抵抗

Logarithmic correction to resistance

论文作者

Járai, Antal A., López, Dante Mata

论文摘要

我们研究了$ \ mathbb {z}^d \ times \ mathbb {z} _+$当$ \ mathbb {z}^d \ times \ times \ mathbb {z} _+$中的初期无限的分支随机步行的痕迹。在适当的力矩假设下,我们表明root $ n $之间的电阻为$ O(n \ log^{ - ξ} n)对于$ξ> 0 $,不取决于模型的详细信息。

We study the trace of the incipient infinite oriented branching random walk in $\mathbb{Z}^d \times \mathbb{Z}_+$ when the dimension is $d = 6$. Under suitable moment assumptions, we show that the electrical resistance between the root and level $n$ is $O(n \log^{-ξ}n )$ for a $ξ> 0$ that does not depend on details of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源