论文标题

连接的联接半晶格

Conjunctive Join Semi-Lattices

论文作者

Delzell, Charles N., Ighedo, Oghenetega, Madden, James J.

论文摘要

据说,如果它具有最高的$ 1 $,并且满足以下一阶条件:对于任何两个不同的$ a,b \ in l $,则在l $中有$ c \ in l $,因此,$ a \ vee c \ vee c \ not = 1 = 1 = b \ vee c $ c $ c $ c $ c $ c $ c = 1 \ c = 1 \ vee,同等地,如果每个主要理想是最大理想的交集,则联接 - 隔离是连接的。我们提出了简单的例子,表明连接性的联接 - 隔离可能没有任何主要理想。 (联接 - 米拉略的最大理想不必是素数。)我们表明,每一个连接性的联接 - 隔离式 - 与$ \ mathrm {maxrm {max} l $的紧凑型$ t_1 $ topogy coin封闭的子基本的同构是同构,这是一组最大的理想。该表示形式是规范的,因为当适用于紧凑型$ t_1 $ -space $ x $的联接封闭子基本时,该表示形式产生的空间是同型带有$ x $的。我们说,如果$ ϕ^{-1}(w)$是$ l $的最大理想的交集,则$ w​​ $是$ m $的最大理想,如果$ ϕ^{-1}(w)$是$ l $的交集,则说明join-semilattice morphism $ ϕ:l \ to m $。我们表明,连词 - 隔离式之间的每种连接形态都是由$ \ mathrm {max} m $ to $ \ mathrm {maxrm {max} l $引起的多价函数引起的。据说,如果它是晶格,则据说是一个环形的基础,如果它是环形的,则瓦尔曼在任何基本的开放$ u $中,如果有任何点$ u $,那么基本的开放$ v $却错过了$ u $,并且与$ u $覆盖$ x $ x $。很容易表明每个沃尔曼基地都是连接的。我们举例说明了不是沃尔曼的结合环形底座。最后,我们检查了一个连接的联盟半层次$ l $的免费分配晶格$ dl $。通常,它不是连接的,但是我们表明,$ dl $的某种规范,代数定义的商与由$ l $生成的代表空间的拓扑的子层次是同构的。我们描述了许多应用。

A join-semilattice $L$ is said to be conjunctive if it has a top element $1$ and it satisfies the following first-order condition: for any two distinct $a,b\in L$, there is $c\in L$ such that either $a\vee c\not=1=b\vee c$ or $a\vee c=1\not=b\vee c$. Equivalently, a join-semilattice is conjunctive if every principal ideal is an intersection of maximal ideals. We present simple examples showing that a conjunctive join-semilattice may fail to have any prime ideals. (Maximal ideals of a join-semilattice need not be prime.) We show that every conjunctive join-semilattice is isomorphic to a join-closed subbase for a compact $T_1$-topology on $\mathrm{Max} L$, the set of maximal ideals of $L$. The representation is canonical in that when applied to a join-closed subbase for a compact $T_1$-space $X$, the space produced by the representation is homeomorphic with $X$. We say a join-semilattice morphism $ϕ:L\to M$ is conjunctive if $ϕ^{-1}(w)$ is an intersection of maximal ideals of $L$ whenever $w$ is a maximal ideal of $M$. We show that every conjunctive morphism between conjunctive join-semilattices is induced by a multi-valued function from $\mathrm{Max} M$ to $\mathrm{Max} L$. A base for a topological space is said to be annular if it is a lattice, and Wallman if it is annular and for any point $u$ in any basic open $U$, there a basic open $V$ that misses $u$ and together with $U$ covers $X$. It is easy to show that every Wallman base is conjunctive. We give an example of a conjunctive annular base that is not Wallman. Finally, we examine the free distributive lattice $dL$ over a conjunctive join semilattice $L$. In general, it is not conjunctive, but we show that a certain canonical, algebraically-defined quotient of $dL$ is isomorphic to the sub-lattice of the topology of the representation space that is generated by $L$. We describe numerous applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源