论文标题
Dilaton重力中的半经典S-Matrix和黑洞熵
Semiclassical S-matrix and black hole entropy in dilaton gravity
论文作者
论文摘要
我们使用复杂的半经典方法来计算具有边界的Dilaton重力中点粒子的散射幅度。该型号具有非零的最小黑洞质量$ M_ {CR} $。我们发现,在低于$ m_ {cr} $的能量下,粒子以单位概率在边界上散布了边界。在较高的能量下,散射幅度被指数抑制。相应的半经典溶液被解释为形成中间黑洞,该中间黑洞腐烂到最终状态粒子。将散射概率的抑制与中间黑洞状态的数量相关联,我们找到了与热力学一致的黑洞熵的表达式。此外,我们修复了熵的恒定部分,该部分由热力学参数释放。我们通过修改标准的欧几里得熵计算来重新逐渐重视这一结果。
We use complex semiclassical method to compute scattering amplitudes of a point particle in dilaton gravity with a boundary. This model has nonzero minimal black hole mass $M_{cr}$. We find that at energies below $M_{cr}$ the particle trivially scatters off the boundary with unit probability. At higher energies the scattering amplitude is exponentially suppressed. The corresponding semiclassical solution is interpreted as formation of an intermediate black hole decaying into the final-state particle. Relating the suppression of the scattering probability to the number of the intermediate black hole states, we find an expression for the black hole entropy consistent with thermodynamics. In addition, we fix the constant part of the entropy which is left free by the thermodynamic arguments. We rederive this result by modifying the standard Euclidean entropy calculation.