论文标题

超越域API:以任务为导向的对话建模,具有非结构化知识访问

Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access

论文作者

Kim, Seokhwan, Eric, Mihail, Gopalakrishnan, Karthik, Hedayatnia, Behnam, Liu, Yang, Hakkani-Tur, Dilek

论文摘要

大多数以任务为导向的对话系统的工作仅限于域API的有限覆盖范围,而用户通常具有与API未涵盖的域相关请求。在本文中,我们建议通过合并外部非结构化知识来源来扩大面向任务的对话系统的覆盖范围。我们定义了三个子任务:寻求知识转弯检测,知识选择和知识接收的响应生成,可以单独或共同建模。我们介绍了Multiwoz 2.1的增强版本,其中包括基于外部知识源的新的覆盖范围和响应。我们使用常规和神经方法介绍每个子任务的基准。我们的实验结果表明,有必要朝着这一方向进行进一步研究,以实现更具信息性的对话系统。

Most prior work on task-oriented dialogue systems are restricted to a limited coverage of domain APIs, while users oftentimes have domain related requests that are not covered by the APIs. In this paper, we propose to expand coverage of task-oriented dialogue systems by incorporating external unstructured knowledge sources. We define three sub-tasks: knowledge-seeking turn detection, knowledge selection, and knowledge-grounded response generation, which can be modeled individually or jointly. We introduce an augmented version of MultiWOZ 2.1, which includes new out-of-API-coverage turns and responses grounded on external knowledge sources. We present baselines for each sub-task using both conventional and neural approaches. Our experimental results demonstrate the need for further research in this direction to enable more informative conversational systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源